Besides Copper, What?

Policies for Productivity Growth in Chile

Addressing The Skills Challenge

Juan Carlos de la Llera 23.04.2014

First piece: Global Competitiveness Index

Second piece: The University

Third piece: The Solow Model

Cobb-Douglas production function

$$Y = AK^{\alpha}(hL)^{1-\alpha}$$

Robert Solow (Nobel prize 1987)

Depreciation, investment, and output per worker

Our formal goal is to tackle:

$$Y = AK^{\alpha}(hL)^{1-\alpha} \xrightarrow{\div L}_{\text{(per worker)}} y = Ak^{\alpha}h^{1-\alpha}$$

From the University $\left\{ \begin{array}{ll} \text{Human capital: } h \\ \text{Productivity: } A = T \times E \\ & \downarrow \\ \text{Technology} \\ \text{(Knowledge)} \end{array} \right.$

The productivity issue with Chile

After C. Syverson, 2014

Universities leading Engineering and Technology...

1.	MI	т
⊥.	IVII	

- 2. Stanford University
- 3. University of Cambridge
- 4. Berkeley
- 5. ETH Zurich
- 6. Imperial College London
- 7. NUS
- 8. EPFL
- 9. University of Oxford
- 10. Caltech

Leaders in entrepreneurial ecosystems

OECD & WB recommendations

S&T and R&D:

- Increase contribution of government and productive sector
- Increase funding for doctoral students and expensive scientific equipment
- Encourage university-industry linkages

Access and equity:

- Review admission system
- Improve chances of less advantaged students to enroll in preferred institution

Relevance:

- Develop stronger needs between employers' needs and academic programs of HEIs
- Review the curriculum introducing elements such as teamwork, intercultural awareness and entrepreneurship
- Greater national commitment to incorporating second language in undergraduate programs
- Strategy to position Chile as a preferred destination for international education

Governance & financing

- Improve flexibility and articulation
- Clear separation between education degrees and professional licensing
- Introduce modern management practices
- Move towards shorter first degrees according to worldwide trend

Complex Integration

The University

THE "CLOVER" 2030 ENGINEERING STRATEGY:

An Engine to Surf the Waves for Chile's Development

Source: Poh, M.Z., Swenson, N.C., Picard, R.W., "A Wearable Sensor for Unobtrusive, Long-term Assessment of Electrodermal Activity " (2010)

Education versus GDP per capita

Education and the Cobb-Douglas model

Output per worker Productivity Capital per worker

Amount of labor input per worker

 $v=Ak^{\alpha}h^{1-\alpha}$ Capital share's of income $_{\approx 1/3}$

Factors of production

Steady state:
$$y^{ss} = h \times \left[A^{1/(1-\alpha)} \left(\frac{\gamma}{n+\delta} \right)^{\alpha/(1-\alpha)} \right]$$
 fixed

All other

$$\frac{y_1^{ss}}{y_2^{ss}} = \frac{h_1}{h_2}$$

Output (y) versus amount of labor input per worker (h)

			Percentage of the Adult Population with			
		Average Years of Schooling	No Schooling	Complete Primary Education	Complete Secondary Education	Complete Higher Education
Developing Countries	1975	3.2	47.4	32.9	8.1	1.6
	2010	6.7	20.8	68.8	31.5	5.3
Advanced Countries	1975	8.G	6.2	78.8	34.9	8.0
	2010	11.0	2.5	94.0	63.9	16.6
United States	1975	11.4	1.3	94.1	71.1	16.1
	2010	<u>12.4</u>	0.4	98.8	85.4	20.0

$$\frac{y_1^{ss}}{y_2^{ss}} = \frac{h_{US}}{h_{dc}} = \frac{1.134^4 \times 1.101^4 \times 1.068^{4.4}}{1.134^4 \times 1.101^{2.7}} = 1.51$$

Predicted versus actual GDP per worker: h

Competence based curriculum

- Competency can be broadly defined as the ability of a student/worker enabling him to accomplish tasks adequately, to find solutions, and to realize them in work situations. This definition fits in with the need for describing competencies and assessing them.
- Competencies consist of components that are trainable (knowledge, skills) and components that are more difficult to alter (attitudes, believes). In addition competencies refer to a profession in an organizational context.

Student centric activity (learning)

Constructive Alignment

Course objectives, teaching and assessments aligned around the construction of deep learnings

Lower income students

Higher income students

9 out of 10

2 out of 10

Access to higher education

Access to higher education

PSU score (Admission 2011)

Technology and the Cobb-Douglas model

Output = Productivity x Factors of production

$$\hat{y} = \hat{A} + \alpha \hat{k} + (1-\alpha)\hat{h}$$
Growth rate of output = Growth rate of productivity + Growth rate of factors of production

Sources of Differences in Output per Worker

$$\hat{y} = \hat{A} + \alpha \hat{k} + (1-\alpha)\hat{h}$$
Growth rate of output
$$= \begin{cases} Growth \ rate \\ of \ productivity \end{cases} + Growth \ rate \\ of factors of production$$

$$\frac{\hat{A}}{\hat{y}} \approx 1.35/(1.83 + 1.35) = 42\%$$

Effect of Shifting Labor into R&D

Productivity, A (ratio scale)

(b) Path of Output per Worker

Output per worker, y (ratio scale)

Solow model (only labor):

$$Y = A(1 - \gamma_A)L \Rightarrow y = A(1 - \gamma_A)$$

$$\hat{A} = \frac{L_A}{\mu} = \frac{\gamma_A}{\mu} L$$

S:
$$\gamma_A = const.$$

Rate of technological progress:
$$\gamma_A = const.$$
 $\hat{\mathcal{X}} = \hat{A} = \frac{\gamma_A}{\mu}L$

Investment in R&D → GDP (%)

Country	Number of Researchers	Researchers as a Percentage of the Labor Force	Research Spending (\$ billions)	Research Spending as a Percentage of GDP
United States	1,412,639	0.89%	398.2	2.8%
Japan	655,530	1.00%	137.9	3.4%
Germany	311,519	0.74%	82.7	2.8%
France	229,130	0.80%	48	2.2%
Korea	236,137	0.96%	43.9	3.3%
OECD Total	4,199,512	0.70%	965.6	2.4%

Based on Chilean labor force above 8 million, we should have 50K-80K researchers. We have 1/10th of that!

Technology Leader and Follower in Equilibrium

A new culture (values, attitudes, and beliefs)

Entrepreneurship survey – 1540 students surveyed

Do you consider entrepreneurship as a real possibility for your future?

Is it possible to succeed in entrepreneurship using Science and Technology?

Why not?

Main difficulty?

